Differences in gut microbiota between young and old cats

A recent study published in Heliyon highlighted the essential role of intestinal microflora and fecal metabolites in the proper growth of cats.

Published on
, byValeria Metoldo

In humans, the gut microbiota as we age undergoes changes; in the elderly, this is significantly altered suggesting that gut flora imbalance is closely related to aging. In cats, the age-related metabolic characteristics of the gut microbiota are not yet understood.

What factors predispose to change in gut microbial composition?

Sequencing analysis of the human fecal microbiota has shown that the microbial composition of the gastrointestinal tract is influenced by several factors, including: individual differences, environmental changes, and lifestyle.

In cases of morbid obesity, in fact, there is a transformation of intestinal flora from protective to harmful. Similarly, changes in the microbiota occur during the aging process that can be linked to various diseases.

Recent sequencing studies of the human microbiota in elderly individuals suggest that such changes may be an intrinsic factor in the aging process.

Analysis of bacterial genus diversity in relation to age

With the aim of understanding the relationship between gut microbes and fecal metabolites, as well as identifying differences in the gut microbiota among cats at different ages, a group of researchers used 16S rRNA gene sequencing, to analyze gut microbial composition, and LC-MS metabolic analysis methods (Liquid Chromatography-Mass Spectrometry) to study changes in the metabolic spectrum of feces.

The results showed a significant difference in the composition of the gut microbiota between young and old cats.

Using analysis algorithms such as the T-test and Wilcoxon, 36 different amplicon variant sequences (ASVs)-that is, different genetic variants present in the biological sample examined-and 8 different bacterial genera were identified in the young group. In the elderly group, however, 81 different ASVs and 17 different genders were found.

In the present study, two genera, Prevotella e Parabacteroides, played the role of dominant flora in the young group. While in the elderly group, the two dominant genera were Bacteroides e Collinsella. In addition,metabolomic analysis identified 537 types of fecal metabolites, with significant differences between young and old cats.

In fact, with increasing age, 16S sequencing showed that fructose and mannose metabolism was more active in the elderly group, probably due to the aging of the organism.

Finally, upon analysis of changes in intestinal metabolites in different age groups, choline levels were found to be significantly reduced in the elderly cat, suggesting that adequate choline supplementation could slow aging.

Conclusions

The intestinal flora in animals is complex and, as is now known, establishes a symbiotic relationship with the organism that is “mutually beneficial.” Currently, research on adding probiotics or metabolites to cat food focuses mainly on adding some conventional probiotics, such as Bacillus and Lactobacillus.

This study opened New perspectives to investigate the relationship between the composition and metabolism of the gut microbiota in cats of different ages, but it remains to be understood whether these differences are the main cause of the variations in metabolites or whether the differences in metabolites are caused by differences in gut microflora.

Reference

Reference: Tian T, Zhou Y, Xu Y. Intestinal microbial 16S sequencing and LC-MS metabonomic analysis revealed differences between young and old cats. Heliyon. 2023 May 19;9(6):e16417. doi: 10.1016/j.heliyon.2023.e16417. PMID: 37251444; PMCID: PMC10220381. https://doi.org/10.1016/j.heliyon.2023.e16417

Explore the latest content
11_07_2023_Effetti della segale sul microbiota intestinale dei cani i risultati di uno studio svedese
Effects of rye on the gut microbiota of dogs: results of a Swedish study
27_06_2023_L’importanza di differenti tipologie di fibre negli alimenti umidi per cani
The importance of different types of fiber in wet dog foods
26_05_2023_Integrazione funzionale in gatti con malattia renale cronica
Effects of calorie restriction on gut microbiota and inflammatory status in dogs
See more content on
11_07_2023_Effetti della segale sul microbiota intestinale dei cani i risultati di uno studio svedese
Effects of rye on the gut microbiota of dogs: results of a Swedish study
04_07_2023_Differenze nel microbiota intestinale tra gatti giovani e anziani
Differences in gut microbiota between young and old cats
26_05_2023_Integrazione funzionale in gatti con malattia renale cronica
Effects of calorie restriction on gut microbiota and inflammatory status in dogs
20_06_2023_Dermatite atopica nei cani atopici studio indaga possibile ruolo di dieta e antibiotici
Atopic dermatitis in atopic dogs: study investigates possible role of diet and antibiotics
16_06_2023_Effetti degli animali domestici sui proprietari nuovo studio sul micobiota
Effects of pets on their owners: new study on mycobiota
13_06_2023_Sviluppo del microbiota e dei profili di acidi biliari nel cucciolo di cane
Development of the microbiota and bile acid profiles in the puppy dog
19_05_2023_Misurare la disbiosi intestinale nei gatti per diagnosticare e monitorare l’enteropatia cronica
Measuring intestinal dysbiosis in cats to diagnose and monitor chronic enteropathy
09_05_2023_Analisi del microbiota fecale in gatti con disbiosi di diverso grado
Analysis of fecal microbiota in cats with dysbiosis of different degrees